12-6 Permutations and Combinations

Vocabulary

Review

1. Combine the two sentences below to form one sentence.

I will order a hamburger. I will pay for it with a $\$ 1$ bill.
\qquad
2. Combine the bowling scores below to find the total for the three games.

$$
103
$$

$$
149
$$

$$
97
$$

Total:
Combine like terms in each expression.
3. $3 x+5 x=$
4. $4 a^{2}+3 a-5-6 a^{2}-2 a=$
5. $8 x+2 y-x=$
6. $2 c^{2}+5 c d-d^{2}+3 d=$

- Vocabulary Builder

permute (verb) pur myoot
Related Words: order (verb, noun), permutation (noun)
Definition: To permute a list of numbers means to rearrange the order or sequence of the numbers.

Math Usage: Sometimes you want to know how many ways you can permute a set of objects. Each ordered arrangement of the objects is called a permutation.

Use Your Vocabulary

7. Underline the correct word to complete each sentence.

You can permute / permutation the digits in the number 394 to create different numbers.
The number 934 is a permute / permutation of the digits 3,9 , and 4 .
8. Permute these race results to show another possible ordered arrangement.
first place: Rita
first place: \qquad
second place: David
second place: \qquad
third place: Beth
third place: \qquad

Key Concept Multiplication Counting Principle

If there are m ways to make a first selection and n ways to make a second selection, then there are $m \cdot n$ ways to make the two selections.
9. There are 4 types of bread and 5 types of sandwich meat. You choose one type of bread and one type of sandwich meat for your sandwich. How many different sandwiches are possible?
4. $\quad=\quad$ so \quad different sandwiches are possible.
10. You have 9 shirts and 4 pairs of pants. How many different outfits can you make?
. $=$, so you can make different outfits.

A permutation is an arrangement of objects in a specific order. Here are the possible permutations of the letters A, B, and C without repeating any letters.

$$
\text { ABC } \quad \text { ACB } \quad \text { BAC } \quad \text { BCA } \quad \text { CAB } \quad \text { CBA }
$$

Problem 2 Finding Permutations

Got It? A swimming pool has 8 lanes. In how many ways can 8 swimmers be assigned lanes for a race?
11. Working from left to right, write how many choices there are for a swimmer to be assigned to each lane. (Hint: When you determine the number of choices for a lane, assume that a swimmer has been chosen for each lane to the left.)
$\begin{array}{lllllll}\text { Lane } 1 & \text { Lane } 2 & \text { Lane } 3 & \text { Lane } 4 & \text { Lane } 5 & \text { Lane } 6 & \text { Lane } 7\end{array}$ Lane 8

12. Write the missing factors below to show how many ways 8 swimmers can be assigned lanes for a race.

8 •
13. There are ways 8 swimmers can be assigned lanes.

A shorter way to write the product in Problem 2 is 8!, read "eight factorial." For any positive integer n, the expression n factorial is written as n ! and is the product of the integers from n down to 1 . The value of 0 ! is defined to be 1 .

You can use factorials to write a formula for the number of permutations of n objects arranged r at a time.

Key Concept Permutation Notation

The expression ${ }_{n} \mathrm{P}_{r}$ represents the number of permutations of n objects arranged r at a time.

$$
{ }_{n} \mathrm{P}_{r}=\frac{n!}{(n-r)!}
$$

Example $\quad{ }_{8} \mathrm{P}_{2}=\frac{8!}{(8-2)!}=\frac{8!}{6!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=56$
14. Find the number of permutations of 5 objects arranged 3 at a time.

$$
{ }_{5} \mathrm{P}_{3}=\frac{!}{(-))!}=\frac{!}{!}=\frac{\cdot}{}=
$$

Problem 3 Using Permutation Notation

Got It? There are 6 students in a classroom with 8 desks. How many possible seating arrangements are there?
15. Circle the expression that will help you solve the problem.
${ }_{6} \mathrm{P}_{8} \quad{ }_{8} \mathrm{P}_{6} \quad{ }_{8} \mathrm{P}_{2} \quad{ }_{2} \mathrm{P}_{8}$
16. Circle the graphing calculator screen that shows the problem.

17. The number of possible seating arrangements is

A combination is a selection of objects without regard to order. For example, if you are selecting two side dishes from a list of five, the order in which you choose the side dishes does not matter.

Key Concept Combination Notation

The expression ${ }_{n} \mathrm{C}_{r}$ represents the number of combinations of n objects chosen r at a time.

$$
{ }_{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}
$$

Example

$$
{ }_{8} \mathrm{C}_{2}=\frac{8!}{2!(8-2)!}=\frac{8!}{2!6!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)}=28
$$

18. Find the number of combinations of 4 objects chosen 3 at a time.

$$
\left.{ }_{4} \mathrm{C}_{3}=\frac{!}{!(-))!}=\frac{!}{!\quad!}=\frac{\cdot}{(. \quad .}\right)=
$$

Problem 4 Using Combination Notation

Got It? In how many different ways can you choose 3 types of flowers for a bouquet from a selection of 15 types of flowers?
19. Does it matter in which order you choose the three types of flowers?

Yes / No
20. Circle the expression that will help you solve the problem.
${ }_{15} \mathrm{P}_{3}$
${ }_{15} \mathrm{C}_{3}$
${ }_{3} \mathrm{C}_{15}$
${ }_{3} \mathrm{P}_{15}$
21. Find the number of possible ways to choose the three types of flowers.
22. There are possible ways to choose the three types of flowers.

Lesson Check • Do you UNDERSTAND?

Vocabulary Would you use permutations or combinations to find the number of possible arrangements of 10 students in a line? Why?

23. Underline the correct word(s) to complete the sentence.

If the first two students in line switch positions, the order of the 10 students
is / is not changed.
24. Would you use permutations or combinations to find the number of possible arrangements of 10 students in a line? Explain.
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
Multiplication Counting Principle
\square permutationn factorialcombination

Rate how well you can find permutations and combinations.

