## 1.4 Represent Functions as Graphs Notes

Table



## Ordered Pairs



Graph the function  $y = \frac{1}{4}x$  with the domain 0, 4, 8, 12.



The table below shows the average score, m, on the mathematics section of the Terra Nova for BRK (Baumholder, Ramstein, Kaiserslautern) from 2006-2011 as a function of time, t, in years since 2006. Graph the function.

| Years since 2006, t | 0  | 1  | 2  | 3  | 4  | 5  |
|---------------------|----|----|----|----|----|----|
| Average Score, m    | 68 | 73 | 74 | 77 | 78 | 82 |



Make a rule for the function represented by the graph. Identify the domain and range of the function.





You try!

1) Graph y = 3x - 2 with the domain: 0, 1, 2, 3, 4.



2) Write a rule for the function.

Summarize your notes:



## 1.4 Practice Problems



|--|

| 1 |   |  |  |  |
|---|---|--|--|--|
|   | X |  |  |  |
|   | γ |  |  |  |



4) Describe and correct the error in graphing the function y = x - 1 with domain 1, 2, 3, 4, 5.



Write a rule for the function represented by the graph. Identify the domain and the range of the function.

5)



6)



7)



8) MULTIPLE CHOICE: The graph of which function is shown?

**(A)** 
$$y = \frac{1}{2}x + \frac{1}{2}$$
 **(B)**  $y = x + \frac{1}{2}$ 

**B** 
$$y = x + \frac{1}{2}$$

**©** 
$$y = \frac{3}{2}x + \frac{1}{2}$$
 **D**  $y = 2x + \frac{1}{2}$ 

**(D)** 
$$y = 2x + \frac{1}{2}$$



QUICK REVIEW

1) 
$$\frac{6}{13} + \frac{4}{13}$$

$$2) \frac{6}{11} \left( \frac{5}{6} \right)$$

3) Find the Greatest Common: 42, 56

1.4 Application

1) Find the domain and range of graph. 2) Write a rule for the function.



3) Did you hear that Justin Bieber is coming to play Hanger 2 at Ramstein? He only wants to play for the best students in the BRK area. The table below represents the amount of tickets that are left to be sold as a function of days selling.

| Days sold, x    | 0  | 1  | 2  | 3  | 4  | 5  |
|-----------------|----|----|----|----|----|----|
| Tickets left, y | 90 | 82 | 74 | 66 | 58 | 50 |

- a) Graph the function.
- b) Describe how the number of tickets left changes as the number days selling increases.
- c) Would it be reasonable to expect that there would be 34 tickets left after 7 days selling? EXPLAIN!





- 4) The graph at the right represents the number of visits to <a href="www.myalgebra.weebly.com">www.myalgebra.weebly.com</a> for the last week. Day 1 represents Sunday, Day 2 represents Monday and so on.
- a) Describe how the number of visits to the websites changes over the course of the week.
- b) Why would Day 7 be so different from the other days?



