Write your questions here!

We have learned how to solve linear systems by graphing and substitution. Now we will learn how to solve the linear systems by using a method called \qquad

Steps for Solving Linear Systems by Elimination

-Make sure that all of the variables and the equal sign are "lined up."

- Decide which coefficients you want to cancel out. To cancel out, they must be opposites. You might have to multiple the equations first!
- Add the two equations and solve new equation. (One variable should cancel out!)
- Take your answer to Step 3 and substitute it into either of the orginal equations.
-Write your solution as a coordinate point or as a pair of values.

Example 1: Solve the linear system using elimination:

$$
\begin{aligned}
& 3 x-4 y=10 \\
& 5 x+4 y=6
\end{aligned}
$$

Step 1: Do you have x over x, y over y and equal sign over equal sign? Yup! Continue on....
Step 2: The y's are already opposites. Our work here is done.
Step 3: Add the two equations. Solve the resulting equation.
Step 4: Take the answer from Step 3 and plug it into either of the original equations and solve for the other unknown variable.
Step 5: Write your solution as a coordinate point or as a pair of values.

2 8.3: SOLVING SYSTEMS BY ELIMINATION
More Examples:
2. $2 x-y=12$
$-2 x-3 y=-12$
4. $\quad 4 x-3 y=8$
$2 x-2 y=0$
3. $x+2 y=4$
$-6 x+2 y=-10$
5. $9 x+2 y=39$
$6 x+13 y=-9$
\qquad
\qquad
\qquad

Practice 8.3 Systems of Equations (Elimination)

Show all of your work!

Solve each system by elimination.

1) $-4 x-4 y=8$
$-x+4 y=12$
2) $3 x+2 y=-3$
$-3 x+y=12$
3) $x-2 y=-9$
$-4 x-2 y=-4$
4) $-2 x+y=4$
$-2 x+2 y=0$
5) $-4 x-y=8$
$-12 x+3 y=-24$
6) $-x+4 y=-1$
$-2 x-8 y=14$
7) $-6 x+3 y=3$
$5 x-8 y=-8$
8) $4 x-3 y=-16$
$5 x+2 y=3$
9) $3 x+2 y=10$
$4 x+5 y=18$
10) $-5 x-6 y=-3$
$2 x+4 y=6$
11) Is the point $(0,0)$ a solution of the system of linear equations below?
$2 x+y=2$
$4 \mathrm{x}-2 \mathrm{y}=2$
12) Is the point $\left(\frac{5}{4}, 7\right)$ a solution of the system of linear equations below?

$$
\begin{gathered}
4 x+y=12 \\
-4 x+3 y=16
\end{gathered}
$$

[8.3: SOLVING SYSTEMS BY ELIMINATION]

Application and Extension

1. Solve the following system of equations using elimination.

$$
2 x+2 y=2
$$

$-8 x+4 y=16$
2. You have just enough coins to pay for a loaf of bread priced at $\$ 1.95$. You know you have a total of 12 coins, with only quarters and dimes. Let $Q=$ the number of quarters and $D=$ the number of dimes. Complete:

$$
\begin{gathered}
_^{+}+\ldots=12 \\
0.10 _0.25 \quad=\$ 1.95
\end{gathered}
$$

Representing the number of coins.
Representing the value of the coins.
Now, solve the linear system using elimination.
(Hint: Multiply the second equation by -10!)
3. The table shows the number of apples needed to make apple pies and applesauce sold at a farm store. During a recent picking at the farm, 169 Granny Smith apples and 95 Red Delicious apples were picked. Write and solve a system to determine how many apple pies and how many batches of applesauce can be made if every apple is used. (Hint: read across each row to create your equations!)

Type of Apple	\# Needed for $\boldsymbol{\pi}($ Pie $)$	\# Needed for Sauce	Total
Granny Smith	5	4	169
Red Delicious	3	2	95

Coming Up: Evaluate each expression if $a=4, b=-2, c=10, x=-3$ and $y=-5$.

1. $(3 a b c)^{2}$
2. $3 a b c^{2}$
3. $3 a^{2} b^{2} c^{2}$

Quick Review: Find the equation of the line that passes through the given points.

1. $(-2,-2) ;(4,4)$
2. $(-2,2) ;(4,-4)$
3. $(2,3) ;(0,3)$
